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A number of homogenous and heterogeneous ruthenium com-
plexes catalyse hydrogenation of various substrates including
olefins, aldehydes, ketones and nitro compounds.1,2 It is also
reported that ruthenium complexes generally have less effec-
tice catalytic activities for hydrogenation of various alkenes.3

Due to the strong affinity of ruthenium toward heteroatom
compounds, low-valent ruthenium complexes acts as efficient
catalysts for reduction of different carbonyl compounds.
Aldehydes,4 ketones,5 carboxylic acids6 and carboxylic anhy-
drides7 can be converted into the corresponding alcohols with
various ruthenium complexes in an atmosphere of hydrogen gas.

Ruthenium catalysts are widely used also in organic synthe-
sis with high chemoselectivity and regioselectivity.8

Asymmetric hydrogenation of carbonyl compounds has been
extensively studied in recent years.9 To the best of our knowl-
edge, there have been a few reports on enantioselective hydro-
genation of alkylidene lactones catalysed to chiral lactones by
BINAP-Ru(II) complexes.10 Although Osakada et al, demon-
strated racemic γ-lactones could be prepared by using
[RuH2(PPh3)4] and [RuCl2(PPh3)3] catalysed hydrogenation
of keto-acids,11 there is no report on the synthesis of chiral 

δ-lactones from keto-acids by using chiral ruthenium com-
plexes. Our ultimate goal is to devise a catalytic method for
the synthesis of optically active δ-lactones, which often occur
in nature or as parts of natural products.12 Herein, we
described our attempts to develop an enantioselective hydro-
genation of keto-acids using a variety of chiral reduction cat-
alysts. The asymmetric reduction of keto-acid derivatives
(1a–c) was carried out to afford the corresponding chiral 
δ-lactones (2a–c) by using ruthenium-BINAP catalysts in the
presence of H2 (30 kg/cm2) (Scheme 1).

The keto-acids (1a–c) were employed as the model sub-
strates for our study since they are easily prepared by
Friedel–Crafts reaction. [RuH2{(S)-BINAP}2], [RuCl2{(S)-
BINAP}] and [Ru(OAc)2{(S)-BINAP}] were prepared
according to the literature procedure.13 The asymmetric
hydrogenation of keto-acids (1a–c) was then investigated.
Three kinds of BINAP- ruthenium complexes were tested and
the results are shown in Table 1. The reduction of 1a was car-
ried out by using (S)-3 and (S)-4 as catalysts, which afforded
product 2a in yields of 68%, 56% ee and 72%, 44% ee respec-
tively. However, when the reaction was carried out below 
150°C, it gave a very low conversion.14 In the presence of
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hydrogen gas (30 kg/cm2), the [Ru(OAc)2{(S)-BINAP}] cata-
lyst gave a relatively high yield (82–92%) via asymmetric
reduction of 1a–c. Since high reaction temperatures are nec-
essary to carry out the dehydration process to synthesise the
lactones 2a–c, at 80°C in CH2Cl2 as solvent, the hydrogena-
tion 1c can only afford products like 2c in less than 5% yield.
It has been shown that the optimum reaction conditions for the
synthesis of 2 is using dry toluene as solvent below 120°C.

The keto-acid was reduced to the corresponding intermedi-
ate δ-hydroxyacids (6a–c), which then cyclised immediately
to afford the corresponding lactones (2a–c). The δ-hydroxy-
acids (6a–c) could not be isolated from the reaction. The
mechanism of the hydrogen transfer reduction of α, β-unsatu-
rated acids using [Ru(OAc)2{(S)-BINAP}] complex as cata-
lyst has been established.15 In a similar way the mechanism of
the hydrogenation of keto-acids was suggested to be in
Scheme 2.

On the basis of these findings, the use of {Ru(OAc)2{(S)-
BINAP}] is most effective for the acceleration of the reaction

(Table 1, entry 3, 4, and 7), although the enantiomeric excess
of the products is a little lower. The carboxylic acid has ester
groups substituting at the coordination sites on the metal, and
then the carbonyl of this intermediate binds the ruthenium-
BINAP, where the reducation of the carbonyl group via the
metal is a prerequisite to obtaining enantioselectivities in the
hydrogenation reaction.

In conclusion, the use of [RuH2{(S)-BINAP}2],
[RuCl2{(S)-BINAP}] and [Ru(OAc)2{(S)-BINAP}] catalysts
for reduction in dry toluene as solvent in the presence of
hydrogen provides a highly efficient route for asymmetric
hydrogenation of the keto-acids to form the corresponding
chiral lactones.

Experimental

All substrates and ruthenium complexes were prepared according to
the literature procedure. The solvent was purified by short path distil-
lation. Melting points were determined on a Micro capillary melting
point apparatus and uncorrected. IR spectra were obtained on a
Horiba 710 FT-IR spectrometer. 1H NMR was recorded an Varian 500
MHz spectrometer. Flash chromatography was carried out with silica
gel 60 N (spherical, neutral) from Merck. Enantiomeric excesses
were determined by HPLC analysis using a Chiralcel OD column. All
reactions were run in autoclave under hydrogen (30 kg/cm2).

General procedure for synthesis of chiral β-lactones 2a–c: A mix-
ture of 1c 1.0 g (5.2 mmol) and ruthenium complex Ru(OAc)2[(S)-
BINAP] 0.09 g (0.104 mmol) in dry toluene (25 ml) were placed in a
100 ml stainless steel autoclave. After purging three times with

Table 1 Asymmetric hydrogenation catalysed by BINAP-Ru complexesa

Entry Substrate Catalyst Temp./˚C Solvent Yieldb/% e.ec/% Config.d

1 1a (S)-3 150 Toluene 68 56 R
2 1a (S)-4 150 Toluene 72 44 S
3 1a (S)-5 120 Toluene 82 22 S
4 1b (S)-5 120 Toluene 88 9 S
5 1c (S)-3 120 Toluene 56 26 S
6 1c (S)-5 80 CH2Cl2 <5 — —
7 1c (S)-5 120 Toluene 92 38 S
aReactions were carried out in autoclave under 30 kg/cm2 of hydrogen gas for 24h using 2 mol% of catalyst.
bIsolated yield.
cDetermined by HPLC on a Chiralcel OD column.
dAbsolute configuration is based upon measurement of rotation and comparison with the literature.
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hydrogen, the pressure was raised to 30 kg/cm2 and the reaction mix-
ture was stirred at 120°C for 24 h. The reactor was cooled and the sol-
vent was removed under reduced pressure, the residue was purified by
column chromatography on silica gel using chloroform as solvent.
The chiral δ-lactones 2a–c were obtained as colourless crystals in
variant yields.

δ-phenyl-δ-valerolactone (2a): m.p. 71–73°C; 82% yield; IR (thin
film) 2979, 1731, 1261, 1108, 752, 696 cm–1; 1H NMR (CDCl3,
500 MHz) δ 7.36 (s, 5H), 5.36 (dd, 1H, J = 9.8 Hz, J = 3.2 Hz),
2.75–2.55 (m, 2H), 2.19–2.15 (m, 1H), 2.02–1.97 (m, 2H), 1.92–1.85
(m, 1H).

δ-(4-methoxyphenyl)-δ-valerolactone (2b): m.p. 59–60°C; 88%
yield; IR (thin film) 2952, 1737, 765 cm–1; 1H NMR (CDCl3,
500 MHz) δ 7.27 (d, 2H, J = 10.3 Hz), 6.90 (d, 2H, J = 10.3 Hz), 5.29
(dd, 1H, J = 10.1 Hz, J = 3.5 Hz), 3.82 (s, 3H), 2.72–2.53 (m, 2H),
2.15–2.12 (m, 1H), 2.01–1.96 (m, 2H), 1.92–1.87(m, 1H).

δ-(4-methylphenyl)-δ-valerolactone (2c): m.p. 89–90°C; 92% yield;
IR (thin film) 2954, 1735, 1241, 1043, 732 cm–1; 1H NMR (CDCl3,
500 MHz) δ 7.23 (d, 2H, J = 8.7 Hz), 7.18 (d, 2H, J = 8.7 Hz), 5.32
(dd, 1H, J = 9.7 Hz, J = 3.2 Hz), 2.73–2.54 (m, 2H), 2.36 (s, 3H),
2.17–2.13 (m, 1H), 2.00–1.95 (m, 2H), 1.91–1.84 (m, 1H).
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